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ABSTRACT

1 -ON THE PHYSICAL REALIZABILITY OF BROADBAND LUMfED-PARAMETER

EQUIVALENT CIRCUITS FOR LNTERGY-COLLECTING STRUCTURES

The practical implementation of equivalent circuits which represent theI.

energy delivered to an arbitrary load impedance by an antenna or a port on a

scatterer is discussed. Particular attention is paid to the positive-real

function issues associated with the equivalent admittance of the structure

when evolved from the point of view of the Singularity Expansion Method. A

proof is given which establishes that the admittances associated with cur-

rent eigenmode contributions to the total current are individually positive-

real functions. An ad hoc approach to approximating these admittances with

simpler pole-pair positive-real admittances is given for high-Q structures.

A brief survey of the applicable circuit synthesis algorithms and their

features is provided. Some fundamental considerations in the implementation

of the sources representing the energy coupled from the incident wave are

presented.
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ON THE PHYSICAL REALIZABILITY OF BROADBAND LUMPED-PARA1ETER

EQUIVALENT CIRCUITS FOR ENERGY-COLLECTNlG STRUCTURES

1. INTRODUCTION

Schelkunoff presented, to our knowledge, the ftrst development relative

to physically realizable equivalent circuits for radiating structures [1].

While his theory offers a great deal of insight into the resonance aid anti-

resonance phenomena which antennas manifest, the theory provides no means for

the actual physical determination of equivalent circuits for radiating or

receiving structures. More recently, Weber and Toulios provided a means for

some equivalent circuit modeling of antennas on a broadband transient basis

by using a Laplace domain curve-fitting technique [2].

In 1971, Baum introduced the Singularity Expansion Method (SEM) (3].

SEM provides a natural resonance representation for the current on an antenna

or scattering structure. Such a complex resonance representation admits to

the possibility of applying general formal circuit synthesis procedures which

can be implemented in specific cases, provided the SEM description for the

case in question is available. However, a number of questions have arisen

relative to the completeness of the representation. A great deal of work in

the SEM area has proceeded since Baum's introduction of it. The three sum-

mary works by Baum [4,5,6] provide excellent bibliographies and give a nearly

up-to-date summary of what has proceeded. In a later report [7], Baum

relates the singularity expansion to eigenfunction analysis of integral

operators. This relationship bears heavily on the work reported here. Also

I
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U in a later note, he develops a formal theory for equivalent circuit synthesis

for radiating and energy collecting structures [8].

Hess has used SEM analysis to develop a transfer function model for

determining EMP coupling by means of equivalent transfer function circuits

[9]. The present method goes beyond the work of Hess in that it accounts

for the possibility of loading at the terminals of the receiving structure.

More recently, Schaubert has used measured transient response data which was

subsequently analyzed, using a Prony-type algorithm, for the determination

of the complex natural resonances in a network synthesis [10]. This latter

work, though ad hoc in character, is likely to be quite important in elabora-

tions on the synthesis methods presented here. The use of measured data

allows the possibility of structures which are too complex to be modeled on

a theoretical or numerical basis. Schaubert, however, limits his concern to

the determination of the admittance or impedance part of the equivalent cir-

cuit; he does not consider the source problem.

In this work, we have explored some of the ramifications of Baum's

development in reference [8]. In particular, we have emphasized the physi-

cal realizability of the circuits developed with passive elements. As a

consequence, the dominant issue which arises is that of the positive-realness

(PR-ness) of the impedance or admittance representations which result. In a

companion work [11], the results of an extensive numerical study emphasizing

PR properties of admittances for straight wires and wire loop structures are

presented. In subsequent paragraphs here, we shall draw on the results of

reference [11] from time to time as evidence supporting various assertions.

In the following, we develop the formal theory of equivalent network

synthesis based on the singularity expansion. This development essentially

follows Baum (8]. It is reiterated here for the sake of completeness andfib



for the sake of introducing what we feel to be a somewhat simplified nota-

tion. We have chosen to limit our discussion to that of synthesis of the

admittance of the antenna or energy collector, and to electric field inte-

gral equation formulations. These results may be generalized to embrace

impedance-type synthesis and also alternative integral equations for the

structures. Indeed, Baum's formal development in reference (81 includes

this level of generality. We have chosen, for the sake of clarity, tCo

restrict the scope of the present development.

II. FORMAL DEVELOPMENT OF TIE EQUIVALENT CIRCUIT: TERMINAL EIGENELEMENTS

In this section we develop a formal equivalent circuit for an energy-

collecting structure. By an energy-collecting structure, we mean either a

single-port antenna or a scatterer with an inadvertent penetration which can

be identified in terms of a port.

The objective of the development is indicated in Figure la. There, a

generic electromagnetic energy collecting structure, loaded by a frequency

dependent admittance YL(S), is indicated. (We shall use the complex

frequency variable s--the Laplace transform variable-to indicate frequency

*thoughout this development. A tilde - over a function denotes a Laplace

* transformed quantity.) We wish to replace the influence of the driven

energy collecting structure on the admittance YL(S) with a Norton equivalent

circuit, as shown in the right portion of Figure Ia. The elements in the

equivalent circuit are derivable by the steps indicated in Figures lb and

lc. First, the equivalent admittance of the structure YL (S) is obtainable

by treating the structure as a transmitting antenna. To do this, we intro-

duce a frequency dependent voltage V(s) across the port of the structure,

decermine the port current I(s), and find the ratio I(s)/V(s). This ratio

II
II o
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is the admittance in question. The source term in the equivalent circuit

is determined by shorting the port and treating the resulting scattering

problem. From it, we obtain the net current at the port, I sc(s), which

becomes the generator in the equivalent circuit.

The formal SEM equivalent circuit results from. representing the solu-

tions to the two boundary value problems indicated in Figures lb and ic in

terms of the singularity expansion. In the present development, we use the

eigenfunction expansion for the solutions to the respective problems as an

intermediate step toward the development of the singularity expansion. The

intermediate forms of the eigenfunction expansions and properties associated

therewith subsequently prove useful in the development of practical equiva-

lent circuits.

Either of the boundary value problems in question may be formally cast

as an integral equation for the surface current on the surface of the energy

collecting structure. The electric field integral equation for the struc-

ture is representable as

a - inc(<r(r,r',s) ; J(G',s)> - E (rs), r c S , (1)

where the dyadic kernel is given by

a r , = [sul - _ grad div] e s4 -/c/r4w ' ,c] (2)
grad L) IE

with

u - permeability of the medium,

E - permittivity of the medium, and

c - (ic) '  velocity of light in the medium.

[

I .
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Zinc-
The term E (,s) represents the tangential component of the incident field

on s exciting the object. The bracket notation is used to indicate a sym-

metric product-a surface integral over the extent of the scatterer surface,

viz.,
<r(Z,Z,,s) ; J(G,,s)> - ff f(G,P,s) - =J(;',s) dS' .(3)

S

-inc-
The term E (,s) is replaced with a field due to the impressed voltage

V(s) in the case of the transmitting problem of Figure lb.

A formal solution to the integral equation (1) :Nove is given in terms

of the eigenfunction expansion for the surface current J(i,s):

1 J <nG's) -,' (;,S
• r~s = n  <nJS <n (r,s) •Jn~ro)>-

na

The Jn (rs) and the Y(S) are the eigenfunction/eigenvalue pairs for the

integral operator. Namely,

<r(rr',s) ; Jn(r',s)> - Xn(S) (-rs) (5)

The admittance of the structure is determined by solving the antenna

problem indicated in Figure lb. The incident field is taken to be the

quasi-static EMP across the gap width A due to the impressed voltage V(s),

Zinc-E (;,s) - V(s)/A a , r c S ,
g g

with i a unit vector oriented from one gap surface to the other on S ,

defining the reference direction for the EMF, as depicted in Figure 2. In

terms of the eigenfunction expansion, this solution may be written as

.' i

I.
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Figure 2. Detail of the feed gap for the admittance problem.
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V(J ( Gs). (6)
n a n(s) <i Us ~

The S on the bracket of the coupling integration in the numerator indicatesg

that the extent of the integration is limited to the surface area comprising

the gap region of the structure. The net current flowing through the gap

region is representable as an azimuthal integration around the gap of the

expression (6). This integration may be stated formally as 1/A times the

integration over S . Thus,
g

<s) - <a ; an(,s)>
g Sg

^2*<,j ( ,s) ;
V(s) 1 gs

a2 5 X n(s) -j -;S (,

The eigenfunction expansion of the admittance Y(s) follows directly:

Y(s) I(s)/V(s)

<J (r,s) ; a >2
S 1 anSg(Z jn9 (7)

n Xn(s) 2 =--n A <J (r,s) ; j (r,s)>

Z E Y (s)
n n

We introduce the notation Y n(s) to represent the elements of the sumation

in equation (7). We term these Yn "terminal eigenadmittances". We use this

terminology to explicitly distinguish these terms from the eigenadmittance

quantities which Baum defines in reference [7].

ii



TI
The short circuit current for the boundary value problem of Figure lc

* is formally representable as an eigenfunction expansion

Zinc.
ZSC G- -) E Gf,)>l
J (rs) s) rs) ; ,(rs)> n(i,s) (8)

Ans Z U6( i i))

From this form, a short circuit current can be formed if one uses an inte-

gration identical to the one above.

1 sc ,s) .a>
(S) <= ' a^g

z zinc
1 <Jn(r,s) ; E (rs)> <% 0,s) a >1 nn(9)

SX n (a) A jn<J (rs) ; jn(;,a)>

= sc()
n n

Here we introduce the designation "terminal eigensource currents" to denote

the SC (s).n

A useful form results from representing the terminal e.igensource currents

in terms of the terminal eigenadmittances and related voltage sources. The

currents 'sc may be rewritten as

n i~~scs- , ,, coi
I5 (S) -Y (S) V (S)(0
n n n ,

with

(S< (,s) ; i (r,s)>-~),: . (11)

<J (r,s) ; 9 >
ni g•

I'
I*.
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The expressions above lead to the equivalent circuit representation

shown in Figure 3. This circuit is a recasting of the equivalent circuit

sought in Figure la. The recasting results from pairing the current sources

and the admittance contributions due to individual elements in the eigenset.

The form of the circuit suggests transforming from a Norton to a Thevenin

form for each terminal eigensource/eigenadmittance pair, as shown in Figure

3b. The elements of this circuit are given, respectively, by equations (7)

and (11). A caution must be given in regard to applying these forms. Note

that if the symnetric product <J ; a > 0, Yn vanishes quadratically in
n nsg

this product while V has a reciprocal singularity. Thus, for such a ter-

minal location, although V n =, the entire leg of the circuit vanishes.n

III. FORMAL DEVELOPMENT OF THE EQUIVALENT CIRCUIT: SINGULARITY EXPANSION

OF ELE21NTS

The singularity expansion for surface current quantities on a scatter-

ing object can be obtained from the eigenfunction expansion by performing

the residue series expansion of expressions such as equation (4) in terms

of the poles or complex natural resonances of the object. These poles are

the complex frequencies Sni at which the eigenvalues of the integral operator

vanish, viz.,

(s ni n(sni)= 0}

Recently, we have uncovered evidence that branch points may be present in the

complex s-plane, and that at least two eigenvalues are degenerate at these

frequencies. Marnn and Latham [12] argue the absence of branch points in the

complex plane representation of the eigenvalues. However, their argument is

based on an initial assumption of distinct eigenvalues, whereas, in fact, the

'
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branch points actually originate from the eigenvalue degeneracies [13].

However, they correctly argue that for an object immersed in a lossless

medium the overall representation of the current is free of branch integral

contributions. There appears to be no inconsistency here, for in the sum-

mation over all the eigenvalues as indicated in equation (4), the branch

integral contributions contributed by all of the eigenvalues associated with

a given branch sum to zero. The evidence of such a phenomenon occurring in

singularity expansion representations for scattering objects is, at this

writing, sketchy, although we plan to elaborate on this subject in the

future. Because the presence of branch integrals in individual eigenvalue

representations is potentially highly significant in terms of the physical

realizability of the admittances shown in Figure 3, we shall explicitly

include branch integral contributions in our admittance representations for

the moment.

The reciprocal eigenvalue factor which appears in equation (4) may be

expanded in a residue series expansion [6] to yield

1r n + ii(s) " - + + + e(s) (12)n i ni ni

The residues in this expansion are given by

rni " [dXn(sni)/ds]
- I

<3n(rs) ; dr(rr',Si)/ds n s)>n- - (13)

<n ( ,s) n (rs)>

n

3T
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This form results from applying residue calculus to the Rayleigh quotient

representation of the eigenvalues. The bn (s) are contributions to theIn
eigenvalue expansion arising from branch integrals and the en(s) are entire

functions which, according to the Mittag-Leffler theorem, may also be

required. Neither of these types of functions are represented explicitly

here, but are included in the expansion above for the sake of completeness.

It appears, to date, that for practical circuit synthesis it is necessary

that both of these terms be zero. No completely conclusive arguments have

been put forth that they are zero in the general situation.

The use of the expansion (12) and the residue definition (13) in the

terminal eigenadmittances of (7) yields the following:

<Jn(r,sni) a >2

n(S) = Z ig [s lSi + -
= . 8ni 7A2  s

-i S ent

+ (s) + yn(s) , (14)nn

where

Ohi i <jn(r,Sni) ; dr(r,r sni)/ds ; ,Sni)> -

The Y bi and the Yent are, respectively, admittance contributions from then n

branch integral function b in (12) and from the entire function e . Wen n

emphasize that for numerically or experimentally derived SEM descriptions

neither of these terms are explicitly identifiable. By defining

== -->2
n (r'Sni) ^ g> S

A ni =ni A2

**i
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we may compactly write the expansion (14) as

Y n (s) - E +n

i ;ni

S: Yni(S) . (15)
i

The branch integral and entire function terms are dropped here and henceforth

in expressions for Y . The potential consequences of the presence of a non-
n

zero Y n are discussed in Section IV. The Yni(s) are termed modified pole

admittances*. We note that Jni (r,sni) solves

<-- ; ,Sni)> 0

and hence is the natural mode of the object associated with the pole sni

It is evident from (10) and (11) that the terminal eigensource currents

may be expanded in the same fashion to yield

I n (s) " V(Sni) Ani s

(s i Sni ni

+ Ibi(s) + I ent (s)
n n

EVni Yni +In ()+In ()(6

We term the V i pole source voltages. Through precisely the same reasoning

as that used on the eigensource current/eigenadmittance pairs, we interpret

(15) and (16) as representing parallel combinations of legs comprising

series connections of ;ni(a) and Vni(s).

* *We use the term "modified" to be consistent with Baum in [8]. There he
defines an "unmodified" pole admittance Ani/(s - s ), as well.

Sini



15

* IV. POSITIVE-REAL CONSIDERATIONS

The fundamental condition which dictates the physical realizability of

any impedance or admittance is that it be a positive-real (PR) function of

1the complex frequency. This condition results from the fact that a passive

structure (or network) can never dissipate a negative amount of energy.

* Since the admittance function (7) represents that manifested by a passive

energy-collecting object, it must be a PR function. If this admittance is

to be approximately realized by a lumped-parameter circuit, it is necessary

that the summation of (7) be truncated to some finite n. Further, each

Yn (s) embraces a summation over a potentially infinite set of poles, as

expressed in (14). This summation, too, must be truncated for circuit

realization. The circuit realization will encompass a combination of cir-

cuits representing terms in either the summation of (14) or of (7). There-

fore, two issues emerge relative to the way in which this approximate

realization is approached: 1) Is it possible to truncate the summation(s)

of (14) and (7) in such a way as to maintain PR properties, and 2) are the

elemental terms in the sunmand of (14) or the Yn (s) of (7) individually PR?

This section deals with these issues, as we presently understand them.

The terminal eigenadmittances Yn (s) are positive-real functions of

frequency. This result is developed in detail in the Appendix. The develop-

ment given there follows, in essence, that which one uses in developing PR

properties for circuits. The additional feature which must be brought to

bear in the distributed problem of an energy collector is the spatially-

selective feature of the eigenmode currents.

That the terminal eigenadmittances are positive-real functions of fre-

quency is a particularly robust result. First of all, it provides a means

for truncating the summation given in (7). Since any terminal eigenadmittance
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£ term is by itself PR, then any finite sum of terminal eigenadmittances is

also PR. Thus, the summation in (7) may be truncated to produce a PR

approximation to Y(s). The truncation may be based either on temporal or

on spatial frequency of the excitation. The lumped-parameter circuit syn-

thesis problem thus reduces to one of synthesizing terminal eigenadmittances,

* such as that expressed in (14).

The synthesis of the terminal eigenadmittances would be carried out in

the most favorable fashion if the terms in the summation of (15) could be

dealt with a conjugate pole-pair at a time. Conjugate pairs of modified

pole admittances are required to provide the conjugate symmetry associated

with PR functions. Synthesizing these terms on a pole-pair basis limits the

constituent admittances which are dealt with to second order in s. Unfor-

tunately, a number of counterexamples to the PR-ness of these conjugate

pole-pair terms are described in reference [11].

For some structures, the poles associated with a given eigenvalue com-

prise a finite collection. An analytically tractable example of a structure

manifesting a finite collection of poles associated with each eigenvalue is

the sphere [3]. One of the authors of the present paper (DRW) has recently

engaged in a limited study of the eigenvalue/pole associations present for

the straight wire scatterer. The evidence uncovered in this numerical study

of the eigenvalues for the wire indicates a collection of poles distributed

along an arc in the s-plane, as manifested by the sphere. On the other hand,

a wire-loop structure evidences an infinite number of poles associated with

each eigenvalue [14]. The sphere and wire structures may be differentiated

from the loop on a topological basis: Both the sphere and the wire are

simply-connected structures, while the loop is a multiply-connected structure.

% I

,I .
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For structures where the pole set is finite for a given eigenvalue, the

summation indicated in (14) is a finite summation. This resolves the trunca-

tion issue in the summation expressions for terminal eigenadmittances. In

the case of the loop, there is a dominant collection of poles which is of

finite extent (the so-called type 1 and type 2 poles [14]), while the infinite

collection is systematic in its form (the so-called type 3 poles). The

numerical study reported in reference [11] indicates that the sum in (14)

converges to a positive-real value for a reasonable number of type 3 poles

retained in the summation of (14).

Perhaps more important than the truncation issue in determining the

positive-realness of (14) is the role of the two terms Y n and yn. Theren n

is no evidence to date that an entire function contribution ever arises in

the SEM representation. On the other hand, it seems likely that for many

geometries branch integral terms do appear in the singularity expansion for

reciprocal eigenvalues. When the eigenadmittances are all summed together,

the branch integral contributions must vanish since the terminal admittance

is known to be meromorphic. However, the branch integrals must be retained

in the terminal eigenadmittance representation in order to insure their

PR-ness. The numerical study reported in reference [11] indicates that the

terminal eigenadmittance derived from a straight wire driven at its one-

quarter point manifests a non-PR eigenadmittance for the third eigenset.

Investigation of this lack of PR-ness indicates that the departure from PR

is sufficiently drastic that it is not explainable in terms of numerical

error in the derived SEM parameters. It is conceivable that the failing for

this particular case occurs because of the absence of the branch integral in

the finite pole sum taken from the numerical SEM data. The issues of the

occurrence of branch integrals and their consequences on PR properties of
I

-
.2.
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terminal eigenadmittances bear further investigation. This investigation is

tSUbstantially complicated by the fact that most problems which are treated

by means of the Singularity Expansion Method are handled on a numerical

basis. Indeed, our early investigations of the occurrence of branch inte-

grals seem to indicate that their presence results from asymmetry in the

structure. Thus, structures which are highly symmetrical, such as the sphere

and the loop, would not be expected to yield branch integrals in their

analytically obtained eigenvalues.

The numerical study reported in [11] indicates that for both the straight

wire scatterer and for the loop, the single dominant resonant pole-pair

(i.e., the pole-pair located nearest the ju axis) is almost PR when taken

alone. Furthermore, this single pole is the dominant contributor to the

summation portion of the terminal eigenadmittance represented "- (14). If we

choose the indices +1 and -1 to denote the conjugate constituents of the

dominant pnle-pair in the residue expansion for the reciprocal eigenvalues

and for the terminal eigenadmittances, we may write

Yn(s) a y res (s)

n n
>2

<J n(r'Sn1 a > Sg [1 + 1
fi8nl A 2 9 - Snl

<J n(r,S nl) ; > 2

+ a s ; + . (17)
-l A 2  [1 *

nl nl

We emphasize that the presumption of this approximation is an empirical one,

based on observation of the straight wire and loop results alone. The occur-

rence of a significant branch integral contribution to Y is certainly one
n1 ,
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means whereby this result might be invalid. For the numerical examples

tested in [91, these "almost PR" admittances can be adjusted to be approxi-

mated by a PR admittance. The adjustment required is negligible in mag-

nitude in these two examples. Thus, we are able to write the approximation

Y (s) a G + reS (s)n n n

where G is a small, positive conductance added to adjust Y reS to be PR. If
n n

this approximation is possible with some degree of generality, it constitutes

a particularly robust result. Namely, the terminal eigenadmittances for a

structure may be approximately represented in terms of second-order admit-

tances comprising an adjusted pole-pair admittance. Such a second-order

admittance is relatively simple to realize.

V. APPLICABLE CIRCUIT SYNTHESIS TECHNIQUES

The problem of translatinp a positive-real rational function, such as

one derives for a pole-pair or for an eigenset of poles, falls in the realm

of classical network synthesis. The applicable synthesis methods have

existed for a long time [15,16,171. To the end of providing a realization

of equivalent admittances in terms of RLC networks, we present a brief over-

view of the methods available. Although there exist methods which include

ideal transformers and/or gyrators in the realization, we avoid these realiza-

tions since many applications preclude the use of these devices (e.g., due

to power-handling considerations).

The classical approach to the synthesis of a lossy one-port is the Brune

*method [15,16]. The Brune method realizes the sought-after admittance or

impedance in terms of a ladder network. This method was significant at the

V

I.
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time that it was originally formulated, because it was the first successful

effort to realize a general lossy PR one-port. The use of the ladder topology

introduces a constraint which results in an undesirable element in the

realization. This undesirable element appears either as a perfectly-coupled

transformer or a negative inductance. Neither of these elements is realizable

without the use of active devices, of course. Therefore, the Brune procedure

offers little benefic for present purposes.

The Bott-Duffin procedure was the first procedure developed which

allowed the synthesis of a general PR one-port admittance or impedance with

a network comprising only resistors, capacitors, and inductors. The Bott-

Duffin procedure is useful for formal circuits in the present work because

of its generality and its relative amenability to automated implementation.

It is somewhat doubtful, however, that it is useful for the synthesis of

implementable circuits. This doubt stems from the fact that the Bott-Duffin

network takes the form of a balanced bridge for all frequencies [16]. Indeed,

there is a measure of arbitrariness in the network in that any impedance

which one chooses may be inserted in the so-called detector leg of the bridge.

That the network constitutes a balanced bridge produces a high measure of

sensitivity of the network response to errors in component values in the

network. This fact is dramatically demonstrated in the present context by an

example given in reference [11]. Balabanian gives some transformations of the

Bott-Duffin topology which result from different choices of the arbitrary

impedance in the bridge leg of the network [16]. It is conceivable that some

or all of these transformations can provide a utilitarian synthesis by sup-

pressing the sensitivity to component errors.

The Miyata synthesis procedure [15,16] offers a more practical synthesis

Pmethod than either the Brune or the Bott-Duffin procedures. The circuits

i,
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which result from this procedure are always RLC and would seem to present

less sensitivity to component errors. The implementation of this method is

a bit more complicated than the implementation of either of the previous

two, because no single format of the synthesis is applicable to a general PR

function. The method must be adapted on what is quite nearly an ad hoc

basis to make adjustments in the particular form of the rational function

with which one deals [15].

The fourth alternative available as a synthesis procedure is the

Darlington method [17]. This method realizes the admittance in terms of a

lossless two-port which is terminated in a resistance. Although the

Darlington procedure produces networks which are relatively insensitive to

component error, it has the drawback that it may or may not result in a

purely RLC network. The method for some admittances or impedances can intro-

duce either gyrators or ideal transformers.

VI. SOURCE SYNTHESIS CONSIDERATIONS

While positive real considerations constitute the principal issue in

the realizability of the admittance constituents of the equivalent circuit,

we must consider the scheme of implementation carefully in postulating the

means whereby the associated generator elements might be realized. We con-

sider two generator forms here: namely, the eigenvoltage sources given by

(11) and the pole voltage sources given by (16).

Most cases of practical interest for broadband circuit synthesis involve

an energy collector which is excited by what we shall term a "factorable"

incident field. That is, a field which can be written in the form

Zinc
E (r's) -F(r) p(-r,s) f(s) .(18)
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Here, F(r) indicates a spatial distribution factor, p(rs) is a propagation

factor which links space and time dependencies, and f(s) is the Laplace

transform of the time history of the wave. For example, a plane wave with

a time history which is a Dirac function, 6(t), may be written

0inc E- ) e-s ' */c 1

The factor 1 is the transform of 6(t), E0 is a constant polarization vector,

and P is a unit vector in the direction of propagation. If the plane wave

carries a time history f(t) u Z. (f(s)), then the representation is

E0 " (! - i;S) -  f(s)

A highly desirable scheme of implementation for the eigensource form

would introduce f(t) into only a single port. This concept is understood

more clearly with a reference to Figure 4. A voltage v(t) - V- f(t) is

introduced at the port labeled "INPUT". The introduc ion of f(t) at a

single port allows the use of the network with any input waveform which

adheres to the bandwidth limitations inherent in the circuit design. The

input is divided into N identical signals f(t), where N is the number of

constituent eigensources. These sources would be processed by transfer

functions Gn(s) which modify the spectrum of f(s) to produce Vn(S) as given

by (11). This transfer function is identifiable from (11) and (18). Viz.,

(,s) ; F(r) p(rs)>
V (s)- 6 n ... f(s)a gn n os 9 >

= G (s) f(s) (19)

In
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G(s) ss

~~(S)
T(S) 2

INPUT

S)

Figure 4. A practical format for realizing the source voltages.
The single input allows variation in excitation waveshape.

EL
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In this implementation, the issue becomes, then, the realizability of

the Gn (s). Note that the Gn depend on the source configuration that produces

the incident field-i.e., on parameters F and p. If, for example, in the

case of plane wave excitation, the angle of incidence is changed, then the

transfer functions Gn also change.

If the circuit may be limited to a realization of the energy collecting

properties of the object for a single given excitation configuration, then

the collection of transfer functions Gn (s) is fixed. It is conceivable that

through the well understood approximation and synthesis methods for two-port

networks, the Gn (s) might be realized, at least in an approximate fashion.

Another practical possibility is the realization of transfer functions

which are constant amplitude and linear phase shift with respect to fre-

quency. That is, they are realizable in terms of an attenuation and a time

delay. Clearly, such a realization is possible only if the G (s) in (19)• n

are independent of frequency, at least in an approximate sense. We shall

explore this possibility by means of the example of the straight wire scat-

terer.

The eigenmodes of the straight wire scatterer are observed to be essen-

tially independent of frequency and can be approximated by trigonometric

functions. For the coordinate system indicated in Figure 5, we write the

net longitudinal current eigenmodes on the wire as

cOa'z , n odd

(, £ n , n even . (20)

A,

I ' P.
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The z component of the incident plane wave is expressible on the wire as

EinC(zs) = f(s) E0cose e
-szsine /c (21)

z0

Thus,

h -szsin6/c
E0cose !I n (z,s) e dz

G -h (22)
I n(z 9s)

Evaluation of the integral for the modes approximated by (20) yields

(n-l)/2 cosh(sh sinO)/c
4h E 0coso cos(nvz 9/h) n odd

U 2

fti -=c + _ 1,)n/2 sinh(sh sinQ)/c n even (23)
LL sin(nlz g/h)

Recall that we indicate in Section II that a voltage source and hence the

associated G is not needed when the port lies at a null of the mode. Hence,n

we never evaluate (23) in a situation that produces a zero in the denomina-

tor.

It is clear in (23) that the source transfer functions are significantly

dependent on frequency and that the nature of this frequency dependence

changes with the incident angle 0. Only in the broadside incidence case,

0 = 0, are the n (s) frequency independent. This indicates in a concrete

fashion what one is tempted to discern from (19): The frequency dependence

in the source transfer functions stems from phase delay as the incident field

propagates across the object. This dependence exhibited appears physically

realizable, however: the polynomial denominator in terms of a resonant

circuit and the hyperbolic functions in terms of time delays. The time

delays are recognizable by factoring a common time advance and shifting the

. time origin to suppress this advance.
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I
Another tempting alternative is to exploit the frequency independent

character of the pole voltage sources of (16). However, the admittances

associated therewith are realizable on a conjugate pair basis. Thus, the

two pole terms must be combined. We adopt the notation that i and -i con-

stitute the indices for a conjugate pair of poles for a given eigenfunction.

Thus, the conjugate pair admittance is

Y i() i(S n,-i~s

and the pole current source is

Ip(s) - n( ni+ n i (s) Vni (24)

Baum [8] points out that only for the case that Vni is real such that V ni

V ,i does a frequency independent source result. He also points out that

factoring (24) to obtain a voltage source in series with YcP(s) leads to
ni

frequency dependent voltage sources. The nature of the frequency dependence

again changes with the incident field configuration since the Vni do.

The observations and comments in this section delve into only the more

obvious approaches to generator synthesis. The approximation and synthesis

of the transfer finction form in (L9) will I possihby prove frtlitri.l for .i

fixed spatial Form of excitation. The simple attenuator/delay representation

is likely to be useful for electrically-thin objects* when the incident wave

traverses the electrically-thin direction.

*Electrically-thin in terms of the shortest significant wavelength in the

excitation spectrum.

[:F

I>_______________________
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VII. CONCLUSIONS

Several issues are discussed in this work relative to the practical

realizability of equivalent circuits of energy collecting structures where

the circuits are derived from the singularity expansion of the scattering

response on the structure. The principal issue presented is whether or not

component impedance or admittance functions which result are positive-real

(and hence realizable) functions. A general result is that the terminal

eigenadmittance quantities defined herein are positive-real functions of

frequency.

We introduce the concept of approximating terminal eigenadmittances by

the pole admittance of the most highly resonant pole in each eigenset. This

approach is supported as to its practicability in reference (11] through the

examples of the straight wire scatterer and the wire loop. It is emphasized

that this approximation is ad hoc in character and must be tested for any

specific structure to which it is applied. The cases cited produced admit-

tances which were "almost positive-real"--which could be shifted neg.igibly

to be made positive-real. The quality of the approximation and the near

PR-ness of the resulting admittance is conceivably a consequence of the high

Q character of the structures considered. For a low Q structure such as a

spherical scatterer, It is not clear whether or not the admittance contribu-

tion of the dominant resonance pole in the eigenset will suffice or prove

realizable.

Some of the practical considerations in implementing the source portions

of the equivalent circuits are discussed. In particular, the desirability of

formulating aspect and/or frequency independent transfer functions from the

incident waveform's time history to the individual sources is suggested.

Indications are that each of these features results only when geometric
i,
I''
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degeneracies are present and are not true in general. If the frequency and

aspect dependent character of these transfer functions is borne out, the

upshot is that the transfer functions must be realized through the approxima-

tion and realization procedures for two-port circuit synthesis. This realiza-

tion will be specific to a given angle of incidence. Although a more general

result is desirable, in many applications, such as the modeling of energy

coupling into a seatterer which functions as a shield as well, the single-

aspect-angle circuit can provide a useful worst case model.

It is suggested herein that for some structures-in particular those

devoid of appreciable symmetry--branch integrals may constitute a portion of

the terminal eigenadmittance representation along with the usual SEM pole

terms. Though these branch integrals do not appear in the ultimate current

representation, they can well compromise the realizability of the eigen-

admittance segments into which the circuit realization is parceled. The

evidence available regarding these branch integrals is sketchy, at best.

Further work is warranted in this area, too.

In summary, the practical realizability of circuits which model the

energy collecting properties of equivalent circuits over a broad range of

frequencies appears possible. In candor, the procedures and understanding

of realizability issues for a general structure must be declared primitive,

at present.
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Appendix

Consider a conducting scatterer S with unit surface normal A illuminated

-inc
by an incident tangential electric field E (,t). A surface current :(,t)

is induced on S, producing a scattered electric field Esc(i,t) which satis-

fies the boundary condition

E (,t) + E (r,t) - 0 , r c S. (A.1)
tan

By the equivalence theorem, the scatterer may be replaced by a surface cur-

rent j(-r,t) on S radiating in free space. This current, when radiating in

the absence of the sources of the incident field, produces the scattered

field Esc exterior to S.

In the absence of other sources, the total energy U radiated by the cur-

rent distribution j is positive-semidefinite;

t
U(t) - f W(t) dt a 0 (A.2)

where U is the energy and W(t) is the total power radiated by 3 at time t and

is computed as follows:

-sc -

- <E n(rt) ; i(it)> .(A. 3)

-incc

Although the current 7(;,t) and the incident field Einc(r,t) are related by

an integral equation (1), we do not make use of this fact until later.

j ,
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Next, suppose the incident electric field and induced current have the

form
E*

6,t) - J(-r,s) eSt + J (r,s) e

- 2 Re{J(r,s) es t  , (A.4a)

and

-iin c nc- inc nc*- t
En(rt) - E (r,s) eSt + EznC*(r,s) es

zinc - st
- 2 Re{E (r,s) es t  , (A.4b)

zinc-
where s a + jw is a fixed complex number with a > 0, E (r,s) is an arbi-

trary complex vector function of position, and J(r,s) is the spatial dis-

tribution of the resulting complex current response. The excitation is

assumed to begin at t - - at which time there is no initial energy in the

system. Since ea t M 0 for t - - , both Einc and j are zero at t - - and

there is no transient term. That is, the forced response (A.4a) is the total

response.

The power radiated W(t) is now

W(t) = < s) ; zinc(s e2 st

~*

zinc* ~ 2s t+ <J (rs) ; E (-,s)> e

inc* zin- " 2+ [<E (;,s) ; J (r,s)> + <E (;,s) ; j(,s)>] e

zinc~ 2st
- 2 Re( E (r,s) ; J(r,s)> e

+ <E(;,s) ; J*(,s)> e

'i.
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Hence, the total energy radiated, from (A.2), is

kinc - -2st

U(t) - Re{<E (;,s) ; J(I,s)> e /s

zinc - Z 2at
+ <En(r,s) ; 3*(r,s)> e2/o} . (A.5)

If we write the first of the above products in polar form,

IE < Es) ; J(rs)>/s = I<E inc(rs) ; J(r,s)>I/s e ,

then 1(t) can be written as

U(t) = e2°  [I<EI'nc( ,s) ; (r,s)>s cos(2wt + *)

zinc ( =
+ Re{<E (;,S) ; rs>a1~ 0 .(A.6)

We consider the cases w = 0 and cj # 0 separately.

CASE I, a 0.

U(t) = 2 <Re{E LC(rs)} ; Re{J(rs)}> e2ct /a

whence

<Re{E (r,s)} ; Re{J(r,s)}> > 0 . (A.7)

inczi
Since E (;,s) is arbitrary, we could replace it with JE (;,s) and the

corresponding current response would be jJ(r,s). Hence, from (A.7) it

follows that

<Re{jZinc(r,s)} ; Re(jJ(;,s)}> <Imf nc(;,,) } ; Im(%(;,s)1> _ 0 . (A.8)

Equations (A.7) and (A.8) imply that

Re{<E(inc - * 0~~~~Re{ E (;,s) • l(~)}>0•(A.9)
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CASE II, w O.

Since min{cos(wt + -)} = -1, we conclude from (A.6) that

Zinc- Z ZincRe{<E (r,s) ; J (rs)>}/a Z I<E (r,s) ; J(r,s)>/sl _ 0. (A.l0)

Thus, we again obtain

_inc( 
"Re{<E (r,s) ; J (r,s)>} _> 0 , a > 0 (A.11)

as a necessary condition on the current on a passive scatterer.

Using (A.11), we may derive a condition similar to the positive-real

condition on driving-point immittances in circuit theory. The condition

applies to the dyadic kernel of (1). Recognizing that the quantities

Zinc---E (r,s) and J(r,s) in the foregoing are the transformed field quantities

in (1), we write

a-
Re{<j*(;,s) ; Vr(_,;',s) ; J(r,s)>

<J (r,s) ; Re{r(r,r',s)1 ; J(r,s)> > 0 . (A.12)

This result is obtained with the benefit of the dyadic reciprocity condition

r(rr',s) - r*(r',s) - r (P ,,,s)

Thus, Re{(r,r',s)) is positive-semidefinite for a > 0. The condition (A.12)

is the operator counterpart to one of the so-called positive-real conditions

for immittance matrices of multiport networks. We may establish counterparts

to the remaining two conditions defining PR-ness for multiports by examining

the dyadic kernel ?. The conditions may be stated as follows:

(i) P(r,r',s) is analytic for Re{s} > 0;

(ii) (r,r',s) is real for real positive s;

I.

1.i
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with (A.12) restated as

(iii) Re{(r,P',s)} > 0 , Re{s} > 0.

The immittance matrix counterparts to these conditions are necessary and

sufficient that rational polynomial immittance matrices completely represent

a network comprising passive elements. While we presently cannot establish

a-
sufficiency, the three conditions above are necessary for r(rr',s) to

represent a passive scattering process.

Not only the dyadic kernel, but also any input immittance quantity is

positive-real when the object is excited as an antenna. To see this, we

begin with (A.11) with the excitation specialized to a field impressed

across a gap surface S g' namely,

ta V(s)/A r e S_ inc(;s g g

E ) 0 S g (A.13)

Then (A. 11) becomes

Re{V(s) <a ; J (r,s)> /A} = Re{V(s) I (s)gSg

= Re{V(s) Y (s) V (s)}

IV (s) I Re{Y(s)} Z 0 , a > 0 (A.14)

This implies that

Re(Y(s)} > 0 , a > 0 . (A.15)

The remaining two positive-real conditions follow from observation. Thus the

input admittance from the short circuit boundary value problem is positive-

real. Similarly, one may show that the input impedance obtained from the

open circuit boundary value problem [8] is also positive-real.

ii
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a

Next, suppose that the dyadic kernel r has an eigenvalue Xn and corre-n

sponding eigenvector Jn satisfying (5). If we choose as an excitation

zinnn
E nc{,s) . n(S) }n(rs) ,

the response current is Jn (r,s) and (A.l1) becomes

Re{ n s)<J (rs) J n(r,s)>}

= Re{X (s)} n G-<,s) 1 2 a o , a > 0n x

This implies that

Re{ n(s)} _> 0 , a > 0 . (A.16)

By observation, the remaining PR conditions may be established for the eigen-

values with the exception of the case of a X n(s) with a branch point in the

right half plane. We may admit even such an eigenvalue to an "extended" PR

class where the "extended" implies "analytic except for branch points" in the

right half plane.

Thus, eigenvalues (eigenimpedances) are positive-real. Since recipro-

cals of positive-real quantities are also positive-real, then the reciprocal

eigenvalues (eigenadmittances) must also be positive-real;

1

Re (S > 0 a> 0. (A.17)

For scalar positive-real quantities, such as input immittances or eigen-

immittances, it is well-known that the positive-real conditions are also

equivalent to the following conditions [181:
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(a) f(s) has no poles or zeros for a > 0;

(b) poles of f(s) on the imaginary axis must be simple and their
residues must be real and positive; and

(c) Re{f(jw)} a 0 , W C (0os),

where f(s) is an arbitrary PR function. The last of these conditions is

particularly important in testing PR-ness because it requires that f(s) be

examined only on the Jw axis.

.t
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